We are given head
, the head node of a linked list containing unique integer values.
We are also given the list G
, a subset of the values in the linked list.
Return the number of connected components in G
, where two values are connected if they appear consecutively in the linked list.
Example 1:
Input: head: 0->1->2->3 G = [0, 1, 3] Output: 2 Explanation: 0 and 1 are connected, so [0, 1] and [3] are the two connected components.
Example 2:
Input: head: 0->1->2->3->4 G = [0, 3, 1, 4] Output: 2 Explanation: 0 and 1 are connected, 3 and 4 are connected, so [0, 1] and [3, 4] are the two connected components.
Note:
- If
N
is the length of the linked list given byhead
,1 <= N <= 10000
. - The value of each node in the linked list will be in the range
[0, N - 1]
. 1 <= G.length <= 10000
.G
is a subset of all values in the linked list.
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def numComponents(self, head: ListNode, G: List[int]) -> int:
Gset = set(G)
cur = head
noOfcomponents = 0
while cur:
if cur.val in Gset and (not cur.next or cur.next.val not in Gset):
noOfcomponents+=1
cur = cur.next
else:
cur = cur.next
return noOfcomponents
TC: O(n+G) SC:O(G)